Home
Introduction
Technology
Users and applications
Links
Formal description
Use in data structures
Architectural roots
Uses
Making pointers safer
Simulation using an array index
Project partners & contact details
System call
In computing, a system call is the programmatic way in which a computer program requests a service from the kernel of the operating system it is executed on. This may include hardware-related services (for example, accessing a hard disk drive), creation and execution of new processes, and communication with integral kernel services such as process scheduling. System calls provide an essential interface between a process and the operating system.
In most systems, system calls can only be made from userspace processes, while in some systems, OS/360 and successors for example, privileged system code also issues system calls.
The architecture of most modern processors, with the exception of some embedded systems, involves a security model. For example, the rings model specifies multiple privilege levels under which software may be executed: a program is usually limited to its own address space so that it cannot access or modify other running programs or the operating system itself, and is usually prevented from directly manipulating hardware devices (e.g. the frame buffer or network devices).
However, many normal applications obviously need access to these components, so system calls are made available by the operating system to provide well-defined, safe implementations for such operations. The operating system executes at the highest level of privilege, and allows applications to request services via system calls, which are often initiated via interrupts. An interrupt automatically puts the CPU into some elevated privilege level, and then passes control to the kernel, which determines whether the calling program should be granted the requested service. If the service is granted, the kernel executes a specific set of instructions over which the calling program has no direct control, returns the privilege level to that of the calling program, and then returns control to the calling program.
Generally, systems provide a library or API that sits between normal programs and the operating system. On Unix-like systems, that API is usually part of an implementation of the C library (libc), such as glibc, that provides wrapper functions for the system calls, often named the same as the system calls they invoke. On Windows NT, that API is part of the Native API, in the ntdll.dll library; this is an undocumented API used by implementations of the regular Windows API and directly used by some system programs on Windows. The library's wrapper functions expose an ordinary function calling convention (a subroutine call on the assembly level) for using the system call, as well as making the system call more modular. Here, the primary function of the wrapper is to place all the arguments to be passed to the system call in the appropriate processor registers (and maybe on the call stack as well), and also setting a unique system call number for the kernel to call. In this way the library, which exists between the OS and the application, increases portability.
IBM operating systems descended from OS/360 and DOS/360, including z/OS and z/VSE, implement system calls through a library of assembly language macros. This reflects their origin at a time when programming in assembly language was more common than high-level language usage. IBM system calls are therefore not directly executable by high-level language programs, but require a callable assembly language wrapper subroutine.
Tools such as strace, ftrace and truss allow a process to execute from start and report all system calls the process invokes, or can attach to an already running process and intercept any system call made by said process if the operation does not violate the permissions of the user. This special ability of the program is usually also implemented with a system call, e.g. strace is implemented with ptrace or system calls on files in procfs.
Implementing system calls requires a transfer of control from user space to kernel space, which involves some sort of architecture-specific feature. A typical way to implement this is to use a software interrupt or trap. Interrupts transfer control to the operating system kernel, so software simply needs to set up some register with the system call number needed, and execute the software interrupt.
This is the only technique provided for many RISC processors, but CISC architectures such as x86 support additional techniques. For example, the x86 instruction set contains the instructions SYSCALL/SYSRET and SYSENTER/SYSEXIT (these two mechanisms were independently created by AMD and Intel, respectively, but in essence they do the same thing). These are "fast" control transfer instructions that are designed to quickly transfer control to the kernel for a system call without the overhead of an interrupt. Linux 2.5 began using this on the x86, where available; formerly it used the INT instruction, where the system call number was placed in the EAX register before interrupt 0x80 was executed.
In the IBM System/360 mainframe family, and its successors, a Supervisor Call instruction, with the number in the instruction rather than in a register, implements a system call for legacy facilities in most of IBM's own operating systems, and for all system calls in Linux. In IBM's own operating systems, the Program Call (PC) instruction is used for newer facilities. In particular, PC is used when the caller might be in SRB mode.