Home
Introduction
Technology
Users and applications
Links
Formal description
Use in data structures
Architectural roots
Uses
Making pointers safer
Simulation using an array index
Project partners & contact details
Object-oriented programming
Object-oriented programming (OOP) is a programming paradigm based on the concept of "objects", which can contain data, in the form of fields (often known as attributes), and code, in the form of procedures (often known as methods). A feature of objects is an object's procedures that can access and often modify the data fields of the object with which they are associated (objects have a notion of "this" or "self"). In OOP, computer programs are designed by making them out of objects that interact with one another. OOP languages are diverse, but the most popular ones are class-based, meaning that objects are instances of classes, which also determine their types.
Object-oriented programming uses objects, but not all of the associated techniques and structures are supported directly in languages that claim to support OOP. The features listed below are common among languages considered to be strongly class- and object-oriented (or multi-paradigm with OOP support), with notable exceptions mentioned.
Objects are accessed somewhat like variables with complex internal structure, and in many languages are effectively pointers, serving as actual references to a single instance of said object in memory within a heap or stack. They provide a layer of abstraction which can be used to separate internal from external code. External code can use an object by calling a specific instance method with a certain set of input parameters, read an instance variable, or write to an instance variable. Objects are created by calling a special type of method in the class known as a constructor. A program may create many instances of the same class as it runs, which operate independently. This is an easy way for the same procedures to be used on different sets of data.
In class-based languages the classes are defined beforehand and the objects are instantiated based on the classes. If two objects apple and orange are instantiated from the class Fruit, they are inherently fruits and it is guaranteed that you may handle them in the same way; e.g. a programmer can expect the existence of the same attributes such as color or sugar content or is ripe.
It is the responsibility of the object, not any external code, to select the procedural code to execute in response to a method call, typically by looking up the method at run time in a table associated with the object. This feature is known as dynamic dispatch, and distinguishes an object from an abstract data type (or module), which has a fixed (static) implementation of the operations for all instances. If the call variability relies on more than the single type of the object on which it is called (i.e. at least one other parameter object is involved in the method choice), one speaks of multiple dispatch.
For example, objects of type Circle and Square are derived from a common class called Shape. The Draw function for each type of Shape implements what is necessary to draw itself while calling code can remain indifferent to the particular type of Shape is being drawn.
Another early MIT example was Sketchpad created by Ivan Sutherland in 196061; in the glossary of the 1963 technical report based on his dissertation about Sketchpad, Sutherland defined notions of "object" and "instance" (with the class concept covered by "master" or "definition"), albeit specialized to graphical interaction. Also, an MIT ALGOL version, AED-0, established a direct link between data structures ("plexes", in that dialect) and procedures, prefiguring what were later termed "messages", "methods", and "member functions".
In 1962, Kristen Nygaard initiated a project for a simulation language at the Norwegian Computing Center, based on his previous use of the Monte Carlo simulation and his work to conceptualise real-world systems. Ole-Johan Dahl formally joined the project and the Simula programming language was designed to run on the Universal Automatic Computer (UNIVAC) 1107. In the early stages Simula was supposed to be a procedure package for the programming language ALGOL 60. Dissatisfied with the restrictions imposed by ALGOL the researchers decided to develop Simula into a fully-fledged programming language, which used the UNIVAC ALGOL 60 compiler. Simula launched in 1964, and was promoted by Dahl and Nygaard throughout 1965 and 1966, leading to increasing use of the programming language in Sweden, Germany and the Soviet Union. In 1968, the language became widely available through the Burroughs B5500 computers, and was later also implemented on the URAL-16 computer. In 1966, Dahl and Nygaard wrote a Simula compiler. They became preoccupied with putting into practice Tony Hoare's record class concept, which had been implemented in the free-form, English-like general-purpose simulation language SIMSCRIPT. They settled for a generalised process concept with record class properties, and a second layer of prefixes. Through prefixing a process could reference its predecessor and have additional properties. Simula thus introduced the class and subclass hierarchy, and the possibility of generating objects from these classes. The Simula 1 compiler and a new version of the programming language, Simula 67, was introduced to the wider world through the research paper "Class and Subclass Declarations" at a 1967 conference.
The Document Object Model of HTML, XHTML, and XML documents on the Internet has bindings to the popular JavaScript/ECMAScript language. JavaScript is perhaps the best known prototype-based programming language, which employs cloning from prototypes rather than inheriting from a class (contrast to class-based programming). Another scripting language that takes this approach is Lua.
Eric S. Raymond, a Unix programmer and open-source software advocate, has been critical of claims that present object-oriented programming as the "One True Solution", and has written that object-oriented programming languages tend to encourage thickly layered programs that destroy transparency. Raymond compares this unfavourably to the approach taken with Unix and the C programming language.