Users and applications
Formal description
Use in data structures
Architectural roots
Making pointers safer
Simulation using an array index
Project partners & contact details
Control flow
In computer science, control flow (or flow of control) is the order in which individual statements, instructions or function calls of an imperative program are executed or evaluated. The emphasis on explicit control flow distinguishes an imperative programming language from a declarative programming language.
Interrupts and signals are low-level mechanisms that can alter the flow of control in a way similar to a subroutine, but usually occur as a response to some external stimulus or event (that can occur asynchronously), rather than execution of an in-line control flow statement.
A label is an explicit name or number assigned to a fixed position within the source code, and which may be referenced by control flow statements appearing elsewhere in the source code. A label marks a position within source code, and has no other effect.
Today, subroutines are more often used to help make a program more structured, e.g., by isolating some algorithm or hiding some data access method. If many programmers are working on one program, subroutines are one kind of modularity that can help divide the work.
Switch statements (or case statements, or multiway branches) compare a given value with specified constants and take action according to the first constant to match. There is usually a provision for a default action ("else", "otherwise") to be taken if no match succeeds. Switch statements can allow compiler optimizations, such as lookup tables. In dynamic languages, the cases may not be limited to constant expressions, and might extend to pattern matching, as in the shell script example on the right, where the *) implements the default case as a glob matching any string. Case logic can also be implemented in functional form, as in SQL's decode statement.
In functional programming languages, such as Haskell and Scheme, loops can be expressed by using recursion or fixed point iteration rather than explicit looping constructs. Tail recursion is a special case of recursion which can be easily transformed to iteration.
A control break is a value change detection method used within ordinary loops to trigger processing for groups of values. Values are monitored within the loop and a change diverts program flow to the handling of the group event associated with them.
General iteration constructs such as C's for statement and Common Lisp's do form can be used to express any of the above sorts of loops, and others, such as looping over some number of collections in parallel. Where a more specific looping construct can be used, it is usually preferred over the general iteration construct, since it often makes the purpose of the expression clearer.
Infinite loops are used to assure a program segment loops forever or until an exceptional condition arises, such as an error. For instance, an event-driven program (such as a server) should loop forever, handling events as they occur, only stopping when the process is terminated by an operator.
In his 2004 textbook, David Watt uses Tennent's notion of sequencer to explain the similarity between multi-level breaks and return statements. Watt notes that a class of sequencers known as escape sequencers, defined as "sequencer that terminates execution of a textually enclosing command or procedure", encompasses both breaks from loops (including multi-level breaks) and return statements. As commonly implemented, however, return sequencers may also carry a (return) value, whereas the break sequencer as implemented in contemporary languages usually cannot.